
Artworks classification by using
Principal Component Analysis

MASTER DEGREE IN COMPUTER ENGINEERING

Mattia Tritto

Who I am

• I’m Mattia Tritto, a student enrolled in

the Master's Degree program in

Computer Engineering.

• I work at Pasciuti Arte Srls, a family-

owned business specializing in selling

artworks created by the artist Antonio

Pasciuti, a famous Italian painter.

• My contribution to the business

revolves around the field of innovation,

process optimization and

programming.

Project's overall
context

• The objective of this project is to

differentiate between figurative and

abstract artworks.

• This is achieved by initially reducing the

dimensionality of the data through Principal

Component Analysis (PCA).

• Subsequently, a classifier is trained to predict

the classification of artworks based on new

input data.

Project definition

Example of a figurative artwork and an abstract one.

• For this project, I used a total of 120 artwork

images, evenly divided into 60 abstract and

60 figurative pieces.

• Out of these, 100 images are designated to

train the classifier, and the remaining 20

will serve to evaluate the classifier’s

performance on new unseen data.

Dataset available

Example of a figurative artwork and an abstract one.

Topic covered
during the course
• The upcoming slides provide a brief recap on the theoretical

topics used in this project, all of which were fully covered
during the course.

SVD
SVD stands for Singular Value Decomposition.

It is a mathematical technique used in linear

algebra and numerical analysis, and it has

various applications in fields such as signal

processing, data analysis, and machine learning.

Given an arbitrary matrix 𝑋 ∈ ℝ!"#, 𝑋 can be re-written as:

𝑋 = 𝑈 Σ V$

Where:

1) 𝑈 ∈ ℝ!"! , 𝑉 ∈ ℝ#"# are unitary matrices such that 𝑈%𝑈 = 𝑈𝑈% = 𝐼! , and 𝑉%𝑉 = 𝑉𝑉% = 𝐼# . The columns of 𝑈 and 𝑉 are

called left singular vectors and right singular vectors of 𝑋;

2) Σ ∈ ℝ!"# is a diagonal matrix. The entries of Σ are called singular values of 𝑋, and are uniquely determined. The

number of non zero singular values is equal to the rank of 𝑋.

Singular Value Decomposition

PCA
PCA stands for Principal Component Analysis.

It is a statistical technique used for

dimensionality reduction and feature extraction

in data analysis and machine learning.

The main goal of PCA is to transform the original

features of a dataset into a new set of variables,

called principal components, which capture

the maximum variance in the data.

The principal components are new variables which are uncorrelated and ordered so that few retain most of the

variation present in all of the original variables.

The first thing to do is to calculate the new dataset 𝐵 by removing the mean of each column:

𝐵 = 𝑋 − 0𝑋

The first Principal Component is the eigenvector of the covariance matrix 𝐵%𝐵 corresponding to the largest

eigenvalue. Equivalent is to say that the first Principal Component is the left singular vector of 𝐵 corresponding to its

largest eigenvalue.

 If 𝐵 = 𝑈 Σ 𝑉% then the PCs are given by the columns of the Score Matrix defined as:

𝑇 = 𝑈 Σ

How to compute PCA by using SVD

Supervised learning
Supervised learning is a type of machine learning

paradigm where the algorithm is trained on a labeled

dataset, which means that the input data is paired with

corresponding output labels.

The goal of supervised learning is to learn a mapping or

relationship between the input features and the target

labels so that the algorithm can make predictions or

classifications on new, unseen data.

Cross validation
Cross validation is a resampling procedure used to evaluate

ML models on a limited data sample.

The idea is to use different portions of the dataset to train

and test a model on different iterations. This approach

involves randomly dividing the set of observations into k

folds.

The first fold is treated as a validation set and the model is

trained on the remaining k-1 folds.

Outline of the
project
• The upcoming slides explain the methodology employed in

constructing the model, utilizing the theory mentioned in the
preceding slides as key reference points.

Crop and padding

images with Photoshop
Preprocessing data PCA and data reduction Train a binary classifier

Workflow followed

The initial step involved transforming all images into square dimensions of 256px x 256px. Given that the artworks

varied in shapes, rectangular images were filled with white paddings to ensure uniformity in the dimensions of each

artwork.

I opted to utilize Photoshop for this task due to my familiarity with the software, and it facilitated the efficient batch

processing of all images in a single operation.

Crop and padding images with Photoshop

Let 𝐴 be the starting matrix of dimensions 𝑚 𝑥 𝑛 on which we want to apply PCA. In our specific case, 𝐴 is a matrix of

dimensions 65535 𝑥 100. Every image is transformed from a matrix of 256 𝑥 256 into a column vector of dimensions

65535 𝑥 1. Then, each column vector is stacked horizontally to form our matrix 𝐴.

20

35

…

…

12

20

35

…

…

12

…

…

…

…

…

45

125

…

…

251

RGB image 256	𝑥	256	𝑥	3 Gray image 256	𝑥	256 Vectorized image 65535 𝑥 1 Matrix A 65535 𝑥 100

Data preprocessing

The average image (so a column vector 65535 𝑥 1) is computed as the sum of all columns of	𝐴	divided by the number of

columns (the number of images used). The matrix 𝐵 is composed of each column of 𝐴 subtracted by the average image.

Why do we have to center our data? For two main reasons:

• When values are close to zero, the machine tends to be more precise in floating-point calculations;

• The PCA algorithm is much easier in terms of calculations when we center data.

Average image calculation

Average image calculation

20

35

…

…

12

…

…

…

…

…

45

125

…

…

251

+ +

=
100

2

3

…

12

27

Average image

This is how it

looks like

When stretching the eye, we note in the average image only abstract patterns. Figurative elements are perceived as a

form of noise in the data.

Do we have to normalize our data?

It's not an absolute rule. The presence of information might be encoded within the variance of our data. This aspect

is treated as one of the hyperparameters in our model. Following hyperparameter optimization, we can determine

whether it proves to be a suitable choice or not.

Anyway, the standardization procedure for matrix B follows the same methodology seen as averaging. We calculate the

standard deviation for each column and subsequently divide each column by its corresponding standard deviation.

Data dimensionality reduction using PCA

On matrix 𝐵 is applied the PCA algorithm by using the SVD decomposition. The matrix 𝐵 can be decomposed as

follows:

𝐵 = 𝑈 S 𝑉!

How do we obtain the principal components of 𝐵? The principal components are the columns of the 𝑆𝑐𝑜𝑟𝑒 matrix,

defined as:

𝑆𝑐𝑜𝑟𝑒 = 𝑈 S

Now the 𝑆𝑐𝑜𝑟𝑒 matrix has 100 columns, and so 100 PCs. How do we choose the best number of Principal Components

to use?

Principal Components, a visual representation

If we display the first 16 Principal Components (the first

16 columns of the 𝑆𝑐𝑜𝑟𝑒 matrix), we can recognize some

of the abstract patterns that are present in our data.

Principal Components, a visual representation

An intriguing observation is that when data is normalized, patterns are not really discernible. This suggests that

normalizing the data might obscure valuable information econded in the variance, emphasizing the importance of

considering whether or not.

Without normalization With normalization

One way is to calculate the Explained Variance for every number of Principal Component used to project new data. In

our case, the explained variance for k principal components used is defined as:

𝐸𝑉! =
∑!"#
$ #!!

%

∑ #!!
% ∗ %&&

A rough idea of how many PCs to use

Note that starting from the 76st principal

component, we achieve 100% explained

variance.

This is attributed to the fact that our images

are padded with white pixels, effectively

zeroing the variance.

After having defined how many Principal Components to use, now we can project our dataset into the new subspace.

First, we define 𝑆𝑐𝑜𝑟𝑒𝑅𝑒𝑑𝑢𝑐𝑒𝑑 matrix as only the first k columns of the matrix 𝑆𝑐𝑜𝑟𝑒:

𝑆𝑐𝑜𝑟𝑒𝑅𝑒𝑑𝑢𝑐𝑒𝑑 = 𝑆𝑐𝑜𝑟𝑒(: , 𝑘)

The image 𝑛 in our matrix 𝐵 (the 𝑛 − 𝑡ℎ column) can be transformed in the new subspace as follows:

𝑛𝑒𝑤𝐼𝑚𝑎𝑔𝑒" = 𝐵! : , 𝑛 ∗ 𝑆𝑐𝑜𝑟𝑒𝑅𝑒𝑑𝑢𝑐𝑒𝑑

Data projection in the new subspace

Since my data is labeled, we can employ a supervised

algorithm. In this instance, I’ ve opted for a simple logistic

regressor to assess how effectively PCA has linearly

separated the data.

Each row in our dataset now represents an artwork, and

each column the new principal component extracted. The

last column represents the label (0 if figurative, 1 if

abstract).

The logistic regressor finds the equation of an hyperplane

that separate the best the figurative artworks from the

abstract ones.

Logistic regressor

Logistic regressor evaluation

I decided to evaluate the performance of our regressor with the

accuracy metric. The accuracy is a general classficiation metric used,

and it is calculated as follows:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !#$% &'()*)+%(,!#$% -%./*)+%(
!'*/0 "$12%# '3 4#%5)6*)'"(

Accuracy gives us an idea of how many times the predictor has

labeled correctly our samples with respect to all predictions has

made.

In general, we can have an idea of how our model behaves by looking at

his confusion matrix.

K-fold cross validation

In the process of evaluating our model, I utilized a cross validation technique known as k-fold cross validation. K-fold

cross-validation involves partitioning the dataset into k equally-sized folds. The model is trained and evaluated k times,

each time using a different fold as the test set and the remaining k-1 folds as the training set. This process helps ensure

robustness in assessing the model's performance, as it covers different subsets of the data for training and testing.

The accuracy test score, in this context, is calculated as the mean accuracy across all k esperiments. This approach

provides a more comprehensive and reliable estimation of the model's performance by considering its consistency over

multiple subsets of the data. It helps mitigate potential biases that may arise from a specific split of the data, offering a

more robust evaluation of the model's generalization ability.

How to find the best configuration

• To determine the optimal hyperparameters, I

selected predefined values and conducted a grid

search, choosing the set that yields the highest

accuracy.

• This task is quite time-consuming, as it took 3

hours to search for the best combination among

152 different hyperparameter sets.

• The grid search focused on optimizing two key

parameters: whether normalization should be

applied and determining the optimal number of

principal components to use.

Find the best
hyperparameters

Hyperparameters grid search: results

In this graph, we can see how the accuracy goes with respect to the number of principal components used.

The blue line is without normalization, while the orange line is with normalization.

Hyperparameters grid search: results

According to the graph, I have selected the following

hyperparameters, opting for those that resulted in

the highest average accuracy on validation sets:

• Normalization: Yes

• Principal Components: 29

Hyperparameters grid search: the curse of
dimensionality

Note that after the optimal number of principal

components, the model’s performance tends to

decline. This serves as a practical demonstration of

the curse of dimensionality in Machine Learning.

The curse of dimensionality refers to the challenges

and limitations that arise as the number of features

or dimensions in the data increases.

Results
The best model has an accuracy of
100%* on new unseen data.

• The current result may seem trivial due to

the small testing data size (only 20 samples),

which is insufficient for a comprehensive

model evaluation.

• However, this suggests that the model can

be really robust, and increasing the dataset

size could lead to substantial success.

• On the right we have the confusion matrix

that is referred to the test set used.

How about a NN?
In literature, the best way to classify images is by using
convolutional NNs. In this case, I’ve used the Neural Network
ResNet-50.

• ResNet-50 is a convolutional Neural

Network that is 50 layers deep.

• We can load a pretrained version of the
neural network trained on more than a
million images from the ImageNet
database.

• Using Transfer Learning, we can fine-
tune the pretrained version using our
data.

ResNet-50

I utilized the Deep Network Designer toolbox in

MATLAB to load the default version of ResNet-50. To

align with our specific problem constraints, I made

modifications solely to the output layers.

ResNet-50 architecture
modifications

The fine tuning was performed easily in the GUI

provided by MATLAB.

The first graph is the average accuracy on validation

sets for each epoch.

The second graph is the value of the loss function for

each epoch.

ResNet-50 fine tuning

Results
The Neural Network has an accuracy
of 100%* on new unseen data.

Also in this case, the current result may seem

trivial due to the small testing data of only 20

samples which is insufficient for a

comprehensive model evaluation.

The winner is...
According to the current data, there is not a

clear winner. However, once the artworks

archive will be completed, it will be intriguing to

determine who emerges as winner.

How do we use
the model?
Once the optimal hyperparameters for our ML model are
determined, what specific objects should be stored in order to
make new predictions?

Use case of this model

This model proves highly beneficial for previous clients who have purchased artworks in the past and seek information

such as the range of years in which a particular painting was created.

The concept involves the old client uploading a photo of their artwork, which is then subjected to a PCA dimensionality

reduction function. Then, the model calculates whether resulting data point lies above or below the hyperplane that

distinguishes abstract works from figurative ones.

What kind of information I need to store in order to
make new predictions?

In order to make new predictions, I need to store:

1) The average image vector;

2) The score matrix (only the first 29 columns);

3) The coefficients of the hyperplane.

To begin, the initial step involves vectorizing the matrix of the 𝑛𝑒𝑤𝐼𝑚𝑎𝑔𝑒. Subsequently, subtract the average vector

and divide the result by its standard deviation. Following this, apply the transformation using the score matrix. Finally,

insert the transformed data into the hyperplane formula to decide whether the artwork resides above or below the

hyperplane.

What kind of information I need to store in order to
make new predictions with the NN?

To generate new predictions using the Neural Network, we can export the network structure in PyTorch.

This exported structure can then be employed within a Python environment, linked with the website's backend.

Additionally, it is imperative to include all the weights that the NN has learned during the fine-tuning stage in order to

perform the forward propagation.

Bibliography

• MATLAB documentation, PCA

• MATLAB documentation, Deep Network
Designer

• ResNet-50 paper

https://it.mathworks.com/help/stats/pca.html
https://it.mathworks.com/help/deeplearning/gs/get-started-with-deep-network-designer.html
https://it.mathworks.com/help/deeplearning/gs/get-started-with-deep-network-designer.html
https://arxiv.org/abs/1512.03385

